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In global ocean dynamics Rossby waves play a vital rôle in the long-term distribution
of vorticity; knowledge of the interaction between these waves and topography is
crucial to a full understanding of this process, and hence to the transportation of
energy, mixing and ocean circulation. The interaction of baroclinic Rossby waves
with abrupt topography is the focus of this study. In this paper we model the ocean
as a continuously stratified fluid for which the linear theory predicts a qualitatively
different structure for the wave modes than that predicted by barotropic or simple
layered models, even if most of the density variation is confined to the thermocline.
We consider the scattering of a westward-propagating baroclinic Rossby wave by
a narrow ridge on the ocean floor, modelled by a line barrier of infinite extent,
orientated at an arbitrary angle to the incident wave. Transmission and reflection
coefficients for the propagating modes are found using both an algebraic method and,
in the case where this breaks down, matched asymptotic expansions. The results are
compared with recent analyses of satellite altimetry data.

1. Introduction
With the advent of satellite altimetry data leading to the routine production of

global maps of the sea-surface topography, it has become possible to extract the
signature of baroclinic Rossby waves in the sea-surface elevation (Chelton & Schlax
1996). By signature we refer to a field showing the orientation and rate of propagation
of the crests and troughs of the travelling wave field. Thus, the wavelength and phase
velocity of baroclinic Rossby waves can be derived in the world oceans, and this has
led to renewed interest in the questions of the generation and propagation of such
waves. Prior to altimetrically derived wave fields, observations of baroclinic Rossby
waves were indirectly obtained from the analysis of long time series of the vertical
displacement of isotherms at particular moorings within the thermocline (Emery &
Magaard 1976). Time series data of this type were extremely sparse and therefore a
global view of the propagation characteristics of baroclinic Rossby waves remained
elusive.

TOPEX/POSEIDON altimeter data have revealed extratropical Rossby wave phase
speeds greater than the linear long wave phase speed, by as much as a factor of
two (Chelton & Schlax 1996) and eastward-propagating waves within the Antarctic
Circumpolar Current (Hughes 1995). A similar picture regarding wave propagation
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also emerges from the analysis of sea-surface temperature gradient data derived from
the Along Track Scanning Radiometer in studies by Hughes, Jones & Carnochan
(1998) and Hill, Robinson & Cipollini (2000). In this paper we are not concerned
with the mechanisms that could explain the higher than expected phase speeds of
westward-propagating extratropical baroclinic Rossby waves. Readers interested in
this topic are directed to the studies by Killworth, Chelton & de Szoeke (1997),
Killworth & Blundell (1999), Dewar (1998), Dewar & Morris (2000), and Qiu, Miao
& Muller (1997). Instead, we are concerned with the influence of a submerged oceanic
ridge on baroclinic Rossby wave propagation. Returning to the altimeter studies for
guidance in this area, Hill et al. (2000) report that in the neighbourhood of major
oceanic ridges (e.g. the mid-Atlantic ridge) the phase speed of the waves alters and
that a phase discontinuity is exhibited in the wave pattern. Chelton & Schlax (1996)
also note that ridge systems have an impact on the wave field; the amplitude of the
first-mode baroclinic wave to the west of the ridge is considerably greater than that
on the eastern side of the ridge.

To date, most of the theoretical studies addressing the effect of a ridge on Rossby
waves consider a homogeneous or two-layer fluid in the presence of small-amplitude
topography. For example, in Rhines (1969) the transmission and reflection of Rossby
waves in a homogeneous fluid by abrupt topography is studied and it is demonstrated
that small-amplitude topography can reflect the majority of incident wave energy in
the low-frequency limit. Such a prediction, as will be shown, is not valid for a
stratified fluid, and therefore results for homogeneous or piecewise-constant density
profiles are of limited physical relevance to Rossby wave scattering. In further work
on piecewise-constant density profiles the reflection and transmission of barotropic
Rossby waves over a meridional top-hat ridge is addressed by Wang & Koblinsky
(1994) and Huthnance (1981), and within the framework of basin modes, by Anderson
& Killworth (1977). Wang & Koblinsky (1994) also study the energy conversion
between the barotropic and baroclinic mode in a two-layer fluid when a wave is
incident on the ridge. More generally, Rossby wave scattering by an infinitely long
ridge of infinitesimal width rising vertically above the ocean floor (hereafter referred
to as a ‘vertical line barrier’) has been studied, for a homogeneous fluid, by Mysak
& LeBlond (1972) and Murphy & Willmott (1991). In Mysak & LeBlond (1972)
the scatterer is a vertical line barrier of semi-infinite length spanning the entire fluid
depth. Murphy & Willmott (1991) consider scattering by a meridional line barrier
situated in an infinitely long zonal channel. In both these studies, the barrier is viewed
as a prototypical representation of South America.

The scattering of topographic Rossby waves has been addressed in a continuously
stratified fluid context by Schmidt & Johnson (1997). These authors study the scat-
tering of topographic Rossby waves in a non-uniform continuously stratified ocean,
where the scatterer is associated with: (i) an abrupt change in the cross-section of a
sea-floor ridge; (ii) waves incident upon a ridge abutting a coast. In both of these
problems the geometries support the possibility of incident wave energy being re-
flected back along the ridge, a fact that must be taken into account when calculating
the scattered wave fields. Thus, Schmidt & Johnson (1997) are forced to generalize
the isobath tracing method of Johnson (1989, 1991) to accommodate this type of
geometry. In contrast with Schmidt & Johnson (1997) here we consider the scattering
of baroclinic Rossby waves in an ocean of uniform depth for which the isobath
tracing method is not applicable.

Pedlosky & Spall (1999) argue that steep topography is well represented by a
submerged vertical line barrier. In reality, oceanic ridges have numerous gaps and in
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a series of papers (Pedlosky & Spall 1999; Pedlosky 2000a, b, 2001) Pedlosky considers
the transmission and reflection of Rossby waves across a submerged meridional line
barrier (and, indeed, a barrier of non-zero finite width) with gaps. All these papers
adopt quasi-geostrophic theory in either a homogeneous or two-layer fluid, and the
key point that emerges is that the nature of the transmission depends strongly on the
nature of the gaps in the barrier. The waves propagate through the barrier without
change of vertical structure when the gaps extend throughout the depth of the fluid.
However, when the gaps in the barrier are partial and extend only over a single layer
there is significant transformation of the vertical structure of the wave as it traverses
the barrier.

In this paper we consider the scattering of an incident baroclinic Rossby wave by
a submerged line barrier of arbitrary orientation and of infinite length in a continu-
ously stratified fluid. The inclusion of continuous stratification is intended to offer a
substantial improvement in the modelling over previous studies. However, it will result
in an infinite number of modes in the modal structure, which presents an appreciable
additional difficulty in obtaining a solution by algebraic means. A model of this type
will, of course, support energy conversion between modes, the precise structure of
which is to be determined. For mathematical convenience, and ease of exposition,
henceforth we assume linear stratification (i.e. constant N0) although the methods
employed in this article are applicable to arbitrary stratification. No qualitative
differences in the scattered wave field are expected in more physically realistic cases.
Certainly, typical density profiles in the ocean usually have rapid variation only
in a region near the free surface (i.e. within the thermocline), whereas topographic
variations tend to be confined relatively near to the ocean floor where the buoyancy
(Brunt–Väisälä) frequency is essentially constant. We believe that a constant buoyancy
frequency is therefore a reasonable first approximation to realistic stratification, at
least for small-amplitude topography. Nevertheless it would be prudent to confirm
these ideas elsewhere.

Two distinct methods are presented for solving the present boundary value problem.
First, a modal matching technique is described, which is a method frequently adopted
by the research community working on linear water wave scattering by barriers
(see, for example, McIver 1985; Porter & Evans 1995). Unfortunately, the method
converges slowly, and becomes impracticable, in the limits of an infinitesimal-height
barrier or a near surface-piercing barrier. In the former case, we also present a
matched asymptotic solution technique, based on a procedure now routine in acoustic
and elastic wave scattering problems (see e.g. Abrahams & Wickham 1992).

The plan of the paper is as follows. In § 2 the scattering problem is formulated.
Section 3 describes the mode-matching solution technique and highlights its short-
comings. A matched asymptotic Green’s function solution is derived in § 4 for the case
of scattering by an infinitesimal-height barrier. In § 5 numerical results are presented
using the two approaches of §§ 3 and 4, showing the reflection and transmission
coefficients of the dominant vertical modes for a variety of barrier orientations and
heights. Finally, § 6 contains suggestions for future research and a summary of the
results.

2. Formulation of the problem
2.1. Overview and equation of motion

Rossby waves, or planetary waves, play a crucial rôle in unsteady global oceanic
circulation. These waves propagate in regions of non-uniform ambient potential
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Figure 1. Geometry of barrier and incident wave.

vorticity by conserving their potential vorticity as they do so. Bottom topography
and the variation of the Coriolis parameter (a quantity proportional to the normal
component of the Earth’s angular velocity at the surface, see, for example, Cushman-
Roisin 1994) with latitude both give rise to a non-uniform ambient potential vorticity
field. Baroclinic Rossby waves typically propagate at low speeds (relative to barotropic
Rossby waves, inertial Poincaré waves or coastally trapped Kelvin waves) and have
periods of the order of six months or longer. Further details may be found in Pedlosky
(1979). We are interested in the interactions of these waves with the topography of
the ocean floor, in particular ridges.

As our initial model we consider the ocean to be a continuously stratified Boussinesq
fluid occupying −H 6 z 6 0, on a mid-latitude β-plane, with a linearized dependence
of Coriolis parameter on the meridional coordinate, y′, i.e. f0 +βy′, where f0 and β are
constants and a right-handed coordinate frame Ox′y′z has been introduced, with Ox′
directed eastward and Oy′ northward. For convenience, we shall introduce a rotated
coordinate system Oxyz as shown in figure 1. Then the ocean ridge is modelled by an
infinitely thin bottom-standing barrier occupying the plane y = 0 and a fraction of
the total depth of the ocean, −H 6 z < −µH , 0 < µ < 1, whose orientation makes an
angle θ with the x′-axis. Thus a meridional ridge corresponds to an angle of θ = 90◦.
A westward-propagating long baroclinic Rossby wave of vertical mode 1 is incident
on the barrier. We wish to find the scattered field. We shall also assume the flow is
quasi-geostrophic, i.e. the horizontal components of the velocity field in the x′- and
y′-directions respectively are given by

u = − 1

ρ0f0

∂p′

∂y′
and v =

1

ρ0f0

∂p′

∂x′
, (2.1)

where p′(x′, y′, z, t) is the pressure in the fluid and ρ0(z) is the density in the undisturbed
fluid. For this, strictly speaking, we require the topography to be of infinitesimal
amplitude, i.e. 1−µ� 1, a point discussed in Pedlosky (1979). The pressure field then
satisfies the linearized Rossby wave equation:

∂

∂t

{
∇2
Hp
′ + f2

0

∂

∂z

[
1

N2
0

∂p′

∂z

]}
+ β

∂p′

∂x′
= 0, (2.2)
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where N0(z) is the Brunt–Väisälä frequency and ∇2
H is the two-dimensional horizontal

Laplacian. A full derivation of the linearized Rossby wave equation may again be
found in Pedlosky (1979, chap. 3). We shall seek time-harmonic wave solutions with
periods of several months or longer, and therefore write

p′(x′, y′, z, t) = Re {p(x, y, z) exp(−iωt)} , (2.3)

where x and y are aligned in the direction parallel to, and normal to, the barrier,
respectively and ω > 0 is the constant angular frequency.

2.2. Modal decomposition

We shall seek modal solutions of the form

p(x, y, z) = exp(ikx+ ily)Γ (z), (2.4)

where k and l are constant wavenumbers. Applying the method of separation of
variables (in the horizontal and vertical directions) in (2.2) we obtain the Sturm–
Liouville eigenvalue problem for Γ , namely

f2
0

d

dz

(
1

N2
0

d

dz
Γ (z)

)
+ λ2Γ (z) = 0, Γ ′(0) = Γ ′(−H) = 0, (2.5)

with λ2 the separation constant. The boundary conditions in (2.5) express the con-
ditions of the vanishing of the vertical velocity component on the sea floor and
the undisturbed sea surface (commonly referred to as the ‘rigid lid’ boundary con-
dition). For constant N0 the eigenvalue problem may be solved analytically and the
orthonormal vertical modes, Γn(z), are given by

Γn(z) =
(εn
H

)1/2

cos
nπz

H
(2.6)

with ε0 = 1, εn = 2, n = 1, 2, 3, . . . . The associated eigenvalues, λn, are

λn =
nπf0

HN0

=
π

rn
=

f0

(ghn)1/2
, (2.7)

where the rn are the internal Rossby radii of deformation and the hn are the effective
(equivalent) depths. Substituting these separation constants and the ansatz given
in (2.4) into (2.2) we find that the wavenumbers kn and ln for each mode satisfy the
dispersion relation

ω

β
=
ln sin θ − kn cos θ

k2
n + l2n + f2

0/ghn
. (2.8)

From the symmetry of the geometry of the problem it is clear that the spatially
harmonic variation of the pressure in the x-direction (along the ridge) is fixed by the
spatial variation of the incident Rossby wave in that direction (i.e. the x wavenumber
must be constant). Thus the kn must be the same for all n and the dispersion
relation (2.8) may be considered to be a quadratic equation for the wavenumbers ln.
It is well known (see, for example, Pedlosky 1979) that two distinct real roots of the
dispersion relation represent long and short Rossby waves which have westward phase
velocity but westward and eastward group velocities respectively. We shall denote the
wavenumber which decays or has outward-going group velocity in the region y > 0
by ln and that which decays or has outward group velocity in the region y < 0 by
sn. We shall write the pressure field associated with the incident baroclinic (mode 1)
Rossby wave as exp(ik1x + il1y) Γ1(z), where k1 = k cos θ, l1 = −k sin θ and k is the



136 G. W. Owen, I. D. Abrahams, A. J. Willmott and C. W. Hughes

wavenumber of a westward-propagating long baroclinic Rossby wave of frequency ω.
Thus, we may write the total pressure field as the sum of the scattered field and the
incident Rossby wave as

p(x, y, z) =


exp(ik1x+ il1y)Γ1(z) +

∞∑
0

an exp(ik1x+ isny)Γn(z), y < 0,

∞∑
0

bn exp(ik1x+ ilny)Γn(z), y > 0,

(2.9)

where {an} and {bn} are the reflection and transmission coefficients, respectively, to
be determined.

2.3. Boundary conditions

Above the barrier, in the region −∞ < x < ∞, y = 0, −µH < z < 0 we shall
impose continuity of both x and y components of the velocity field. From (2.1) these
matching conditions are, in fact, equivalent to continuity of pressure and the velocity
component parallel to the barrier. We shall also assume that the barrier, which
occupies −∞ < x < ∞, y = 0, −H < z < −µH , is impermeable and thus that there is
no normal flow through it. We may now, using the quasi-geostrophic approximation
given in (2.1), express these boundary conditions in terms of the coefficients an and
bn given in (2.9). From the continuity conditions we have, for −µH < z < 0,∑

anΓn(z) + Γ1(z) =
∑

bnΓn(z), (2.10)∑
ansnΓn(z) + l1Γ1(z) =

∑
bnlnΓn(z), (2.11)

where for notational convenience, we have suppressed the range of the summation
index, which goes from n = 0 to n = ∞ unless otherwise stated. Similarly, the
impermeability condition gives us, for −H < z < −µH ,∑

anΓn(z) + Γ1(z) = 0, (2.12)∑
bnΓn(z) = 0. (2.13)

From (2.10), (2.12) and (2.13) it may be seen that the equation∑
anΓn(z) + Γ1(z) =

∑
bnΓn(z) (2.14)

holds throughout the entire depth of the ocean, −H < z < 0.

3. Algebraic method of solution
3.1. Algebraic form of the boundary conditions

In order to find the transmission and reflection coefficients of the scattered modes it
is now necessary to determine the coefficients an and bn. Multiplying (2.14) by Γm(z),
integrating over −H < z < 0 and using the orthonormality of the eigenfunctions,
Γj(z), we obtain

an + δn1 = bn, n = 0, 1, 2, . . . , (3.1)

where δij is the Kronecker delta. This reflects the symmetry in the geometry, but
due to the anisotropy in the equation of motion, does not provide information about
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the partitioning of energy into the modes. Upon multiplying (2.12) by Γm(z) and
integrating over the range −H < z < −µH we obtain

(I − C)a+ (I − C)e2 = 0, (3.2)

where a denotes a column vector {an}, en denotes the column vector with zero elements
except for a 1 in the nth row, I is the identity matrix and the infinite symmetric matrix
C is defined by

Cij =

∫ 0

−µH
Γi(z)Γj(z)dz = Cji. (3.3)

Similarly, integrating (2.11) and eliminating the bn using (3.1) we obtain

C(L− S)a = 0, (3.4)

where the infinite diagonal matrices L and S have the wavenumbers ln and sn as
their diagonal entries. It may be seen then, from (3.2) and (3.4), that if either of the
operators C and I − C is invertible then the problem does not have a solution. It is,
however, easy to show that this is not the case. Denoting the restriction of Γn(z) to
(−µH, 0) by γn(z), i.e.

γn(z) =

{
Γn(z), z ∈ [−µH, 0]

0, z ∈ [−H,−µH),
(3.5)

and again using the orthonormality of the vertical eigenfunctions we may express
γi(z) as a generalized Fourier series

γi(z) =
∑
j

[∫ 0

−H
γi(s)Γj(s)ds

]
Γj(z) =

∑
j

CijΓj(z). (3.6)

Thus we have

Cij =

∫ 0

−µH
γi(s)Γj(s)ds

=

∫ 0

−µH

[∑
k

CikΓk(s)

]
Γj(s)ds

=
∑
k

Cik

[∫ 0

−µH
Γk(s)Γj(s)ds

]
=
∑
k

CikCkj , (3.7)

and hence C2 = C . Therefore, except in the trivial cases where µ = 0 and µ = 1, when
C = 0 and C = I respectively, we find that 1 and 0 are the only eigenvalues of C .
Equations (3.2) and (3.4) may be rewritten as

a+ e2 ∈ ker(I − C) and (L− S)a ∈ kerC , (3.8)

where kerC denotes the kernel of C . We shall solve these equations by approximately
constructing the kernels by consideration of the eigenvalues and eigenvectors of the
truncated system.

3.2. Solution of the truncated system

Equations (3.2) and (3.4) may be considered to form two infinite systems of algebraic
equations. Suppose we truncate these equations to form two systems of, say, M
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Figure 2. Eigenvalues of C̃ with M = 50 and µ = 0.45.

equations. We shall denote the truncation of C to a real symmetric square matrix of

size M ×M by C̃ , and the similarly truncated vectors a and e2 by ã and ẽ2. It is now

possible to calculate the M eigenvalues, νn and eigenvectors vn, n = 1, 2, . . . ,M of C̃ .
The eigenvalues of such a matrix, with M = 50, are shown in figure 2. This is a quite
typical distribution of eigenvalues, with all except a small number of eigenvalues
being either close to 1 or close to 0. We also suppose, without loss of generality, that
νn 6 νn−1 and that m is such that νm > 0.5 and νm+1 < 0.5. We may then partition the
eigenvectors into the sets

J = {vn : 1 6 n 6 m} and K = {vn : m < n 6M}. (3.9)

It is found by numerical experiment that the ratio of the number of elements in J to
M (where M is the number of elements in J ∪K) is close to µ. This result is extremely
plausible but hard to prove. Clearly, when µ = 1 then C = I and all the eigenvalues
are 1, and when µ = 0 then C = 0 and all the eigenvalues are 0.

The span of K is a finite-dimensional approximation to the kernel of C in the sense
that for any set of coefficients, αn, such that

v =

M∑
n=1

αnen ∈ span K (3.10)

we have, above the barrier,

M∑
n=1

αnΓn−1(z) ' 0, z ∈ (−µH, 0). (3.11)

Although it is possible to construct a vector in the span of K for which the above
approximate equation does not hold (v = vm is the obvious example), extensive
numerical experiments have shown typically that such special cases do not arise.
Alternatively, the span of J is an approximation to the kernel of I − C in the sense
that for a typical vector v ∈ span J , given by

v =

M∑
n=1

βnen, (3.12)
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say, we have
M∑
n=1

βnΓn−1(z) ' 0 for z ∈ (−H,−µH). (3.13)

Thus, if we wish to solve approximately (3.4) we may write

a = (S − L)−1

M∑
n=m+1

αnvn (3.14)

where the coefficients αm are to be determined. Substituting this form into the imper-
meability condition in (3.2) we find

(C̃ − I )
M∑

n=m+1

αn(S − L)−1vn = (I − C̃)e2. (3.15)

From the symmetry of C we may diagonalize the matrix I − C̃ and write it in the
form

I − C̃ = UDUT , (3.16)

where the matrix U is orthogonal and the diagonal matrix D is defined by

Dij =

{
1− νi, i = j,
0, i 6= j.

(3.17)

Upon pre-multiplication by U−1 (3.15) becomes

DUT (L− S)−1

M∑
n=m+1

αnvn = DUT e2. (3.18)

It may be seen that whenever the eigenvalue νi ' 1 the matrix element Dii is negligible
and the constraint imposed by the ith row of the vector equation can be considered
to be trivially satisfied for all αn. Thus, if we neglect the first m rows of (3.18) we are
left with a system of M − m equations for the M − m unknowns, αm+1, . . . , αM , which
may be solved.

Truncation errors in this approximate solution arise either from a neglected term of
the form 1−νi in D being non-zero or the form of a given in (3.14) not satisfying (3.4)
exactly. In each case the size of the error is dependent upon the size of the coefficients
of those eigenvectors with eigenvalues away from 1 or 0. These eigenvectors have
no physical relevance to the problem, being a result only of the truncation process,
and in practice the relevant coefficients, and the associated errors, tend to zero with
increasing truncation number.

4. Asymptotic solution
4.1. Modified equation of motion and scalings

As previously discussed, the algebraic method of solution outlined above fails in the
case where the barrier occupies either a very large or very small proportion of the
total depth of the fluid. In these cases the partition of the eigenvectors into the sets J
and K is uneven. When the barrier is small (1−µ� 1) the ratio of ‘large’ eigenvalues
to ‘small’ eigenvalues is large, J is much larger than K and the convergence is very
slow due the paucity of elements in K . However, the latter case can effectively be
dealt with by employing the method of matched asymptotic expansions.
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We shall assume that the pressure field is time harmonic, and has its spatial
variation in the longshore direction, x, fixed from the incident wave. Furthermore, in
order to simplify the equation of motion we introduce the carrier-wave transformation
to remove the β-effect anisotropy from (2.2). Thus we write

p′(x′, y′, z, t) = Re{p̃(y, z) exp(ik1x+ iγy + iωt)} with γ = −β sin θ

2ω
(4.1)

and (2.2) becomes

∂2p̃

∂y2
+
f2

0

N2
0

∂2p̃

∂z2
+K2p̃ = 0 (4.2)

where the wavenumber K is given by

K2 =

{
β2 sin2 θ

4ω2
+
βk1 cos θ

ω
− k2

1

}
. (4.3)

It may be shown that if the physical parameters in (4.3) are chosen such that the
ocean basin supports propagating Rossby waves whose wavenumber in the direction
of the ridge is k1, we have K2 > 0, and thus K is real.

In the inner region, where the dynamics of the flow are dominated by the topogra-
phy, we scale the variables by the height of the ridge, 1− µ, i.e.

Y =
f0y

(1− µ)HN0

and Z =
z +H

(1− µ)H
. (4.4)

The coefficients in (4.4) are chosen for convenience, i.e. to reduce the operator in (4.2)
to the Laplacian. In the outer region the dominant length scale is the wavelength of
the propagating Rossby waves and hence it is appropriate to employ the scalings

y = Ky and z =
KN0z

f0

. (4.5)

For convenience we also define the non-dimensional ocean depth, h, an additional
non-dimensional vertical coordinate, η, and the polar coordinates r, R and θ by

h =
KN0H

f0

, η = z + h and r exp iθ = εR exp iθ = η + iy, (4.6)

respectively. Thus, defining the non-dimensional small parameter ε by

ε = N0HK(1− µ)f−1
0 , (4.7)

we have

y = εY and η = εZ. (4.8)

We now use this small parameter in order to express the pressure field in the inner
and outer regions as perturbation expansions. A priori knowledge about such physical
problems suggests that this expansion should include not only terms like εn, n > 0, but
also those of the form εn/(log ε+K), where K is some constant to be determined. This
is discussed in some detail in Crighton et al. (1992, § 6.8) but formal matching with
both sets of gauge functions leads to much complexity in both notation and algebra.
Henceforth, for ease of exposition we omit the second set of gauge functions, treat
log ε terms as constants, and just match in ε and its integer powers. This procedure
is a good deal simpler to follow and has been shown to be equivalent to the full
matching process (Abrahams 1987). Thus, scaling out the normalization factor of
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(2/H)1/2 for convenience we pose, in the inner region,(
H

2

)1/2

p(y, z) = P (i)(Y ,Z) + P (Y ,Z) = P (i)(Y ,Z) +

∞∑
n=0

εnPn(Y ,Z), (4.9)

in which the rescaled incident baroclinic Rossby wave term is

P (i)(Y ,Z) = − exp{−ik sin θ(1− µ)HN0Y f
−1
0 } cos{π(1− µ)Z}. (4.10)

Similarly, in the outer region we expect(
H

2

)1/2

p(y, z) = p(y, z) = p(i)(y, z) +

∞∑
n=0

εnpn(y, z). (4.11)

4.2. Outer problem

Rewriting (4.2) in terms of the outer variables we obtain

∂2p

∂y2
+
∂2p

∂z2
+ p = 0, (4.12)

and on these length scales the barrier will be vanishingly small. Thus, in the absence
of the barrier we may first find a Green’s function, g(y0, z0; y, z), which satisfies the
equation

∂2g

∂y2
0

+
∂2g

∂z2
0

+ g = δ(z0 − z)δ(y0 − y). (4.13)

We shall also impose the impermeable bottom and rigid lid boundary conditions on
the Green’s function solution, i.e. that

∂g

∂z0

(y0, 0; z, y) =
∂g

∂z0

(y0,−h; z, y) = 0, (4.14)

and the same radiation conditions as the scattered wave field. Using the usual Fourier
transform techniques it is straightforward to show that the Green’s function may be
written

g(y0, z0; y, z) =
1

2π

∫ ∞
−∞

exp{iα(y − y0)}G(α, z0; z)dα (4.15)

where G is given by

G(α, z0; z) =


−cosh

[{z + h}γ(α)] cosh [z0γ(α)]

γ(α) sinh [hγ(α)]
, z0 > z,

−cosh
[{z0 + h}γ(α)] cosh [zγ(α)]

γ(α) sinh [hγ(α)]
, z0 < z,

(4.16)

with γ(α) = (α2 − 1)1/2.
We shall now apply Green’s theorem to the region V, the interior of the contour

∂V shown in figure 3, where the vertical sections of the contour are located a large
distance from the barrier. Doing so, we obtain∫

∂V

{
g
∂p

∂n
− p∂g

∂n

}
dL0 =

∫
V

{
g∇2p− p∇2g

}
dS0 = −p(y, z), (4.17)

where ∂/∂n denotes the outward normal derivative. From the boundary conditions
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Figure 3. Contour used for the application of Green’s theorem (4.17).

satisfied by p and g at the ocean surface and floor, and the outward radiation
condition as y→±∞, we may rewrite the first integral in (4.17) as

p(y, z) = p(i)(y, z)−
∫ −µh
−h

{
∂p

∂y0

∣∣∣∣
y0=0−

+
∂p

∂y0

∣∣∣∣
y0=0+

}
g(0, z0; y, z)dz0. (4.18)

The physical interpretation of this result is that the total pressure field p is given
by the incident harmonic wave, p(i), and a perturbation due to the barrier which
may be represented in terms of the jump in the horizontal derivative of the pressure
integrated over the small height of the barrier. The range of this integral is restricted
to the inner region and so we may write the integrand as a Taylor series expansion
about z0 = −h (i.e. η0 = 0) and exploit the symmetry about this point to obtain

g(0, z0; y, z) = g +
η2

0

2!

∂2g

∂η2
0

+
η4

0

4!

∂4g

∂η4
0

+ . . . , (4.19)

where the Green’s functions and its derivatives on the right-hand side of (4.19)
are evaluated at (y0, z0) = (0,−h). Upon making the substitutions η0 = εZ0 and
dz0 = εdZ0 in (4.18) we may write

p(y, z) = p(i)(y, z)− g(0,−h; y, z)
∫ 1

0

{
∂P

∂Y0

∣∣∣∣
Y0=0−

+
∂P

∂Y0

∣∣∣∣
Y0=0+

}
dZ0

−ε
2

2!

∂2g

∂z2
0

(0,−h; y, z)
∫ 1

0

Z2
0

{
∂P

∂Y0

∣∣∣∣
Y0=0−

+
∂P

∂Y0

∣∣∣∣
Y0=0+

}
dZ0 + O(ε4). (4.20)

The integrals on the right-hand side of (4.20) are independent of y and z and are
therefore unknown constants, which we may obtain using the matching procedure.
Substituting the perturbation expansion (4.9) into the integral terms of (4.20) we find

p0(y, z) = a00 g(0,−h; y, z), (4.21)

where a00 is an as yet unknown coefficient. Similarly, noting that

∂2g

∂y2
0

= g − ∂2g

∂z2
0

(4.22)
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we may write the next non-zero term as

p2 = a20 g(0,−h; y, z) + a22

∂2g

∂y2
0

(0,−h; y, z), (4.23)

where a20 and a22 are to be found by matching.

4.2.1. Near field of the outer solutions

In order to perform the matching procedure it is necessary to obtain the asymptotic
behaviour of p as r→ 0. This may be derived from the integral forms of g, given
in (4.15), and its derivatives. Using the identity (see Watson 1966, § 6.2)

H
(1)
0 (r) =

1

πi

∫ ∞
−∞

exp{iαy − γ(α)η}
γ(α)

dα (4.24)

we find, after some algebraic manipulation,

g(0,−h; y, z) = − 1

2π

∫ ∞
−∞

exp(iαy) cosh[zγ(α)]

γ(α) sinh[hγ(α)]
dα

=
1

2i
H

(1)
0 (r)− 1

π

∫ ∞
−∞

eiαy−2hγ(α) cosh[ηγ(α)]

γ(α){1− e−2hγ(α)} dα, (4.25)

where η = z + h. The integral term on the right-most side of (4.25) converges for all
η, y and so near r = 0 we may use a Taylor series expansion to obtain

− 1

π

∫ ∞
−∞

eiαy−2hγ(α) cosh[ηγ(α)]

γ(α){1− e−2hγ(α)} dα ∼
(

1− η2

2

)
f00 +

(
y2 − η2

2

)
f02

= f00

(
1− r2

4

)
−
[
f00

4
+
f02

2

]
r2 cos 2θ (4.26)

in which the constants f00 and f02 depend only on the physical parameters of the
problem. These are given by

f00 = − 1

π

∫ ∞
−∞

e−2hγ(α)dα

γ(α){1− e−2hγ(α)} and f02 =
1

π

∫ ∞
−∞

α2e−2hγ(α)dα

γ(α){1− e−2hγ(α)} (4.27)

and may be easily and rapidly calculated numerically. Additionally, we may expand
the Hankel function H (1)

0 (r) as

H
(0)
0 (r) = 1− r2

4
+

2i

π

{
γe + log

r

2

}
+

ir2

2π

{
1− γe − log

r

2

}
+ O(r4), (4.28)

where γe is Euler’s constant (' 0.577216). Similarly we may show that

∂2g

∂y2
0

(0,−h; y, z) =
1

2i

∂2

∂y2
H

(1)
0 (r) + f02 + O(r2)

∼ cos 2θ

πr2
− log r

2π
+

cos 2θ

4π
−
{
γe

2π
+

1

2π
log 1

2
+

1

4i
− f02

}
. (4.29)

4.3. Inner problem

We must now solve the inner problem for the fluid motion in the vicinity of the barrier
in order to determine the constants a00, a20, a22 appearing in the outer expansion.



144 G. W. Owen, I. D. Abrahams, A. J. Willmott and C. W. Hughes

Rewriting (4.2) in terms of the inner variables, P , Y and Z , we find

∂2P

∂Y 2
+
∂2P

∂Z2
+ ε2P = 0, (4.30)

and substitution of the perturbation expansion (4.9) gives us, at the first three orders,

∂2P0

∂Y 2
+
∂2P0

∂Z2
=
∂2P1

∂Y 2
+
∂2P1

∂Z2
= 0 and

∂2P2

∂Y 2
+
∂2P2

∂Z2
+ P0 = 0. (4.31)

In this coordinate scaling the free surface has been taken to infinity. Hence we can
neglect the effect of the surface and we may also write the impermeability conditions
in terms of P (i), the pressure field associated with the incident Rossby wave expressed
in the inner coordinates. Thus, the bottom condition gives us PZ = 0 on Z = 0
and the imposition of no normal flow through the barrier requires that on Y = 0,
0 < Z < 1,

P = −P (i) = cos [π(1− µ)Z] = 1− π2f2
0ε

2Z2

2N2
0H

2K2
+ O(ε4). (4.32)

The problem then reduces to solving the Laplace equation (for P0 and P1) or the
Poisson equation (P2 and higher) subject to these boundary conditions.

4.3.1. Zeroth- and second-order inner solutions

The reduced equations of motion and the boundary conditions given above are even
in both Y and Z and therefore we may restrict our solutions to those similarly even
in Y and Z . It is clear, therefore, that P1 (and, in general, P2n+1) must be identically
zero. It may be shown (see Morse & Feshbach 1953, § 10.1) that the homogeneous
boundary value problem has eigensolutions most easily expressed in the form

Fn(ξ, φ) =

{
ξ, n = 0,

sinh nξ cos
[
n(φ− 1

2
π)
]
, n = 1, 2, 3 . . . ,

(4.33)

where ξ and φ are elliptic coordinates defined by

ξ + iφ = cosh−1(Z + iY ). (4.34)

In order to perform the matching procedure we shall also define the polar coordi-
nates (4.6) R and θ by R exp iθ = Z + iY . It may be shown that as R→∞ these
coordinate systems are related by

ξ = log 2R − cos 2θ

4R2
+ O(R−4) and φ = θ +

sin 2θ

4R2
+ O(R−4). (4.35)

The eigenfunctions of the inner problem, therefore, are such that Fn grows no faster
than Rn, or logR when n = 0. We may now write down an expression for the
leading-order solution in terms of a (constant) particular solution which satisfies
the appropriate boundary conditions (4.32) and the inner eigensolutions (4.33). From
the form of the outer solutions given in (4.21) and (4.23), and in anticipation of the
application of the matching procedure, it may be seen that in general Pm contains
eigenfunctions only up to Fm. Thus, we have

P0 = 1 + A00F0(ξ, φ) (4.36)

In order to find the second-order inner solution it may be seen from (4.31) that
P2 satisfies the biharmonic equation, ∇4P2 = 0. We may therefore write the general
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solution in the form

P2(Y ,Z) = Re {[Z − iY ]G1(Z + iY ) + [Z + iY ]G2(Z − iY )} , (4.37)

where G1 and G2 are arbitrary analytic functions. We may substitute (4.37) into
the Poisson equation, ∇2P2 = −P0, and directly integrate to obtain a particular
solution. Omitting details, it may be shown that the most general solution of the
Poisson equation which satisfies the correct boundary condition on the barrier and
the radiation condition given above is

P2 = −R
2

4
+

{
1

4
+

π2f2
0

2N2
0H

2K2

}
R2 cos 2θ + A20F0(ξ, φ) + A22F2(ξ, φ)

−A00

{
R2

4
Re
[
cosh−1(Reiθ)

]− 1

4
Re
[
Re−iθ{R2e2iθ − 1}1/2]} . (4.38)

It is easy to show that −P2 is equal to the coefficient of the ε2 term in (4.32)
on the barrier, because F0 and F2 vanish there by construction, and the last term in
parentheses is also zero by inspection. We are now in a position to apply the matching
procedure in order to determine the unknown coefficients Aij and aij .

4.4. Matching procedure

In order to determine the six unknown constants a00, a20, a22, A00, A20, and A22 defined
above we shall use the matching procedure given in Van Dyke (1964). It is worth
recalling here that we treat any log ε terms as constants during matching, which as a
consequence are absorbed into these six coefficients. Denote the asymptotic forms of
the inner and outer pressure fields by

P (a) =

a∑
n=0

εnPn and p(a) =

a∑
n=0

εnpn (4.39)

respectively. Now we may write the inner pressure P (a) in terms of the outer variables
y = εY , η = εZ , and further expand in powers of ε. We truncate the expression at
order εa and denote this by P (a,b). Similarly, we may form p(b,a) by rewriting p(b) in
terms of the inner variables and truncating at order εa. The matching principle then
states that

P (a,b) ≡ p(b,a). (4.40)

Performing the expansion and truncation on the lowest-order solutions we find

P (0,0) = 1 + A00 log
2

ε
+ A00 log r (4.41)

and

p(0,0) = a00

{
1

2i
+
γe

π
+

1

π
log 1

2
+ f00

}
+
a00

π
log r, (4.42)

and thus

a00 = πA00 =

{
1

2i
+
γe

π
+

1

π
log

ε

4
+ f00

}−1

. (4.43)

At the second order we have

p(0,2) = p(0,0) + a00r
2

[
1

4π

{
1− γe − log 1

2

}− 1

8i
− f00

4

]
−a00

4π
r2 log r − a00

4
r2 cos 2θ [f00 + 2f02] (4.44)
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and

P (2,0) = P (0,0) +
r2

4

[
A00

{
1 + log

ε

2

}
− 1

]
− A00

4
r2 log r

+r2 cos 2θ

[
2A22 + 1

4
+

π2f2
0

2N2
0H

2K2

]
. (4.45)

Comparison of the r2 and r2 log r terms gives the same form for a00 and A00 as (4.43)
and acts as a consistency check for the matching procedure. Comparison of the
r2 cos 2θ terms enables us to show that A22 is given by

A22 = −1

8
− π2f2

0

4N2
0K

2H2
− a00

8
[ f00 + 2f02] . (4.46)

Similarly, it may be shown that

p(2,0) = p(0,0) +
a22

π

cos 2Θ

R2
and P (0,2) = P (0,0) − A00

cos 2θ

4R2
(4.47)

and thus a22 = −πA00/4 = −a00/4. Finally, performing the highest-order matching
we obtain

p(2,2) = p(2,0) + ε2 a22

4π
cos 2θ +

ε2

π
{a20 − a22} log r

+ε2a20

{
1

2i
+
γe

π
+ 1

2
log 1

2
+ f00

}
− ε2a22

{
1

4i
+
γe

2π
+

1

2π
log 1

2
− f02

}
(4.48)

and

P (2,2) = P (0,2) − ε2

{
A22 + A20 log

2

ε

}
− ε2A00

16
cos 2θ + ε2A20 log r. (4.49)

Comparison of the ε2 cos 2θ terms serves as a consistency check for the relationship
between a22 and A00. Comparison of the remaining terms enables us to form a pair
of simultaneous equations expressing the unknowns a20 and A20, namely

a20

{
1

2i
+
γe

π
+

1

π
log 1

2
+ f00

}
+ A20 log

2

ε
= a22

{
1

4i
+
γe

2π
+

1

2π
log 1

2
− f02

}
− A22,

(4.50)

a20 − πA20 = a22, (4.51)

which may be readily solved.

4.5. Recovery of the normal-mode solution

Having determined the unknown matching coefficients a00, a20 and a22 we may
construct the approximate outer solution in terms of reflection and transmission
coefficients for the normal mode. Deforming the integration contour in (4.15) into the
upper or lower half-plane as appropriate shows that, in the far field,

g(0,−h; y, z) = −i

bh/πc∑
n=0

(−1)n
εn

2hαn
exp(iαn|y|) cos

nπz

h
, (4.52)

where α2
n = 1− n2π2/h2, εn is as in (2.6) and bxc denotes the greatest integer less than

x. The terms for which αn is imaginary correspond to evanescent modes and have
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Figure 4. Pressure field above a barrier of height 0.75H for parameter values specified in § 5.1.
Dotted, dashed and solid lines refer to truncation numbers 8, 30 and 120 respectively.

been neglected. Similarly, we have

∂2g

∂y2
0

(0,−h; y, z) = i

bh/πc∑
n=0

(−1)n
αnεn

2h
exp(iαn|y|) cos

nπz

h
. (4.53)

The z dependence of these terms is identical to the vertical normal-mode structure
derived in § 3 and so using (4.21) and (4.23) we may numerically determine the
coefficients of the propagating modes.

5. Numerical results
5.1. Algebraic method

Having found the unknown coefficients α1, . . . , αm we may reconstruct the vertical
variation of the total pressure field above the barrier. Unless otherwise stated we
shall use the parameters H = 4000 m, N = 0.02 s−1, θ = 45◦, f0 = 1.03× 10−4 s−1 and
β = 1.62 × 10−11 s−1 m−1, which corresponds to the origin of the β-plane at 45◦N,
and ω = 4.04× 10−7 s−1, which represents a period of 180 days. For these parameters
there are four propagating modes. The truncation number is set at M = 300 unless
specifically quoted in the text. Figure 4 shows the total pressure field structure above
a barrier of height 0.75H . The dotted, dashed and solid lines in figures 4 and 5
denote the solution generated by truncation at 8, 30 and 120 terms respectively. We
see a good degree of convergence to a solution with zero pressure on the barrier (as
required by quasi-geostrophy) as the number of terms increases. At the barrier tip,
the pressure increases rapidly and this is in accordance with the singularity in the
analytic solution which may be found by considering the fluid flow near this point.

Figure 5 shows the total pressure field structure above a barrier of height 0.25H .
As with the previous figure, this also exhibits good convergence as the size of the
truncated system increases, as well as the same qualitative behaviour at the barrier
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Figure 5. Pressure field above a barrier of height 0.25H for parameter values specified in § 5.1.
Dotted, dashed and solid lines refer to truncation numbers 8, 30 and 120 respectively.

tip. However, the pressure field is no longer monotonic and there is a local minimum
located at a height comparable to the nodal point in the incident pressure field.

We may also contrast the reflection coefficients for the modes other than the
incident mode. Figure 6 shows the reflection coefficients an for the propagating modes
when θ = 30◦ and 60◦ and the ridge height varies from H (µ = 0) to 0 (µ = 1). Note
that the number of propagating modes varies with barrier angle (due to kn changing
with θ, see (2.8)), and for the parameters chosen there are, as shown, three modes
cut-on at θ = 30◦ and five modes at θ = 60◦. By way of comparison, figures 7(a)
and 7(b) illustrate the coefficients when the incident waves are the second and third
baroclinic modes respectively. In these cases the curves tend to be more oscillatory
than for the mode 1 forcing, which is due to the more oscillatory vertical pressure
variation of the higher modes. For example, the magnitude of the reflected barotropic
wave has n maxima for an incident baroclinic wave of mode n. Due to anisotropy of
the governing equation (2.2), there does not appear to be a simple reciprocity relation
between modes, such as would be available in classical water wave or acoustic models.
Despite this, figures 6 and 7 demonstrate behaviour near to reciprocity between the
modes: figure 6(b) shows the reflection coefficient curves of |a2| and |a3| for an incident
wave of mode 1, and these are very close to the |a1| curves in figure 7 due to incident
mode 2 and 3 waves respectively. Similarly, figure 7(a) shows that the plot of |a3| for
an incident second-mode baroclinic wave is of similar form to the mode 2 reflection
coefficient (scattered from an incident mode 3 wave) given in figure 7(b).

It is clear from figures 6 and 7 that it is quite possible for modes other than
the incident wave to be the most energetic scattered component. Indeed, it may be
noted that, for moderate values of µ, an incident wave will tend to scatter its energy
quite efficiently into its neighbouring modes, e.g. in figure 7(b) the second and fourth
baroclinic modes are of comparable amplitude to the reflected third mode. More
generally, figure 8 shows the reflection coefficient of the incident mode |a1| for a
complete range of barrier orientations, θ, and non-dimensional gap heights, µ. The
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Figure 6. Reflection coefficients for barotropic and propagating baroclinic modes. The incident
wave is the first baroclinic mode and θ = 30◦ and 60◦ in (a) and (b), respectively.
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Figure 7. Reflection coefficients for barotropic and propagating baroclinic modes with barrier angle
θ = 60◦. The incident waves are the second and third baroclinic modes in (a) and (b), respectively.

rapid variation visible near θ = 20◦ and, to a lesser extent, θ = 35◦ and θ = 55◦
corresponds to the angles at which the highest propagating mode is cut-on i.e. its
wavenumber becomes real.

In order to demonstrate the efficacy of the algebraic method employed herein,
figure 9 is presented for the typical parameter values stated at the beginning of this
section with µ = 0.75, and reveals the convergence of the reflection coefficient |a1|
with increasing truncation number. The data are shown in the manner of figure 2 of
McIver (1985), which discussed a related problem in linear water wave theory and
offered an alternative algebraic method of solution. McIver’s approach required a
truncation number of order 400 and a further linear interpolation to find the zeros
of reflection to three significant figures of accuracy. In contrast, the method in the
present work produces reflection coefficients with an additional significant figure of
accuracy at the same truncation number, and therefore removes the need for an
interpolation step.

5.2. Asymptotic method and comparison

Figures 10 and 11 show the comparison between the predictions from the asymptotic
and algebraic methods, when 1− µ� 1. Illustrated are the propagating-mode reflec-
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Figure 8. Contour plot of reflection coefficient |a1| over all ridge heights and orientations.
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Figure 9. Reflection coefficient |a1| against the reciprocal of the truncation number, M.
Plotted points are for M = 100, 200, . . . , 1000.

tion coefficients for, respectively, θ = 30◦ and 60◦ over µ values close to unity; solid
lines refer to the solution of the algebraic system and dashed lines are the asymptotic
results. The generation of the points by the algebraic technique requires considerably
more computation time than for moderate values of µ, whereas the asymptotic results
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Figure 10. Reflection coefficients of propagating modes with ridge angle θ = 30◦. The dashed and
solid lines represent the asymptotic and algebraic solutions, respectively.

may be numerically evaluated very rapidly. Furthermore, the agreement between the
two methods over the range for which they are both accurate implies that the solution
to which the algebraic scheme converges is correct. It can also be seen that when
the barrier is small the incident wave is scattered into several modes, the highest of
which is preferentially reflected. Physically, this corresponds to the fact that ridges of
small height channel the incident energy into waves with vertical scale comparable
to the ridge height. From the symmetry, this effect also occurs in the component of
the transmitted wave field corresponding to the perturbation induced by the ridge.
However, for small barriers the transmission coefficient of the incident mode is O(1),
and thus the incident wave will also be the dominant transmitted mode.

Considering the horizontal velocity and vertical displacement fields it may be shown
(LeBlond & Mysak 1978, § 18) that the mean kinetic and potential energy densities
for a long Rossby wave of mode n, that is

p = An exp{ik · x+ iωt}Γn(z), (5.1)

are given by

〈KE〉 =
|A2

n||k|2
4f2

0

∫ 0

−H
Γ 2
n

ρ0

dz and 〈PE〉 =
|A2

n|
ghn

∫ 0

−H
Γ 2
n

ρ0

dz, (5.2)

respectively. Figure 12 shows the most energetic transmitted mode number for a
range of values in θ, µ parameter space; for example, when µ = 0.5, θ = 45◦ the n = 1
mode has the highest total energy, 〈KE〉+ 〈PE〉. As expected, it may be shown that
when the barrier is small the incident wave, n = 1, is the most energetic. However,
for values of 1 − µ of the order of 0.1 it is possible for other transmitted modes to
be more energetic than the transmitted n = 1 mode. This is particularly true when
the ridge is orientated nearly meridionally, such as is the case with the mid-Atlantic
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Figure 11. Reflection coefficients of propagating modes with θ = 60◦. The dashed and solid lines
represent the asymptotic and algebraic solutions, respectively.
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Figure 12. Most energetic transmitted mode number for each region in parameter space µ, θ.

ridge, and the 90◦E ridge in the Indian Ocean. Further, it may be noted that when
the tip of the barrier is near to a nodal point in the vertical pressure variation (i.e.
µ = 1/2 for mode 1 and µ = 1/3 or 2/3 for mode 2) then there is a tendency for these
modes to be scattered more energetically than in general. Finally, figure 13 shows the
difference in phase (in radians) between this most energetic transmitted mode and
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Figure 13. Phase change between incident and most energetic transmitted modes, θ = 45◦.

the incident wave. It can be seen that for values of 1−µ of the order 0.1 to 0.3, when
mode 3 is the most energetic, this phase change is appreciable.

6. Conclusions
The addition of continuous stratification in the present model improves the physical

relevance of this work compared to previous studies. In particular, results in § 5 reveal
the extent to which a submerged ocean ridge can scatter an incident westward-
propagating long baroclinic Rossby wave into the other modes. However, continuous
stratification does add somewhat to the mathematical difficulty of the scattering
problem. The infinite modal structure requires the solution of an infinite system,
and we have devised a scheme for the solution which is successful for a wide
range of parameter values, regardless of the particular choice of density variation.
The approach is, however, dependent on obtaining accurate numerical solutions to
the eigenvalue problem (2.5). In contrast, application of the asymptotic method, as
applied herein, is reliant on the choice of constant density gradient and application to
a different, more realistic, stratification would in general require a reciprocity relation
to serve the role of Green’s theorem in the derivation in § 4.2. The coincidence between
the algebraic and asymptotic solutions in figures 10 and 11, however, serves as a check
that in the case of linear density variation our algebraic approach is indeed converging
to the correct solution.

Although figure 6 shows that the zeroth mode can be excited with a fairly large
coefficient, the barotropic nature of the vertical structure means that the wave has no
mean potential energy. It transpires that the region in parameter space in which this
mode is the most energetic is fairly small, corresponding to near oblique incidence
when only the n = 0 and n = 1 cut-on modes are present. In parameter regimes
in which higher-order (and more energetic) modes can propagate, these modes can
be generated by relatively small topography, on the scale of 1 − µ = 0.05, which



154 G. W. Owen, I. D. Abrahams, A. J. Willmott and C. W. Hughes

corresponds to ocean ridges of the order of 200 m. It can be expected that the greater
energy in the excited (non-incident) mode would lead to its signature being more
prominent on altimetry data. Furthermore, such mode conversion will in general
result in a phase change in the transmitted wave (see figure 13) and it is hypothesized
that the excitation of non-incident modes would explain the discontinuity in phase
undergone during interactions with topography, as observed recently in Along Track
Scanning Radiometer data by Hill et al. (2000, § 7.3). Figure 10(a) of the latter paper
reveals phase discontinuities in the measured field as Rossby waves propagate across
the Mid-Atlantic Ridge at 20◦W, and in the Indian Ocean at the 90◦E and Central
Indian Ridges. These features may be especially prominent in Hill et al.’s (2000) data
for two reasons. First, their data analysis of the Hovmüller plots preferentially selects
the slower (higher) modes and, second, these higher modes (and especially mode 3)
have stronger thermal signatures than the first mode. As can be seen in figure 13, our
theoretical model suggests a very significant phase shift across the barrier between
an incident mode 1 wave and a transmitted mode 3 wave. There is also some direct
evidence of Rossby wave mode conversion across ocean ridges in Hill et al. (2000),
again visible in figure 10(a) of their article, via the change in angle of the wavecrests
across a ridge. Comparable data are also available via TOPEX/POSEIDON, but in
both cases further activity is needed in order to establish a quantitative link with the
present work.

In terms of further research, two clear avenues present themselves. First, in order
to model more realistically actual ocean processes, we should consider a stratification
that better represents some of the major features of the thermocline. Garrett & Munk
(1972) derived piecewise-exponential best fit profiles from experimental data and this
also leads to an eigenvalue problem which may be solved analytically, albeit with
a little more difficulty than the constant-N0 case used above. Alternatively, Emery,
Lee & Magaard (1984) produced profiles of the Brunt–Väisälä frequency for the
Atlantic and Pacific Oceans from hydrographic data. Using such a profile it should
be possible to obtain the vertical modal structure accurately by standard numerical
methods. Secondly, our model topography may be made more complex. For example,
we believe that a periodic barrier containing gaps is a better model of real topography
and that the scattering by such a ridge may be found using a variation on the algebraic
method employed above. This is currently under investigation by the authors, as is
the effect of mean flow on the scattering by a submerged ridge.

This work was supported by institutional Leverhulme Trust research grant
#F/130/U.
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